Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.129
Filtrar
1.
EMBO Mol Med ; 14(12): e15343, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36278433

RESUMO

Lactate is a central metabolite in brain physiology but also contributes to tumor development. Glioblastoma (GB) is the most common and malignant primary brain tumor in adults, recognized by angiogenic and invasive growth, in addition to its altered metabolism. We show herein that lactate fuels GB anaplerosis by replenishing the tricarboxylic acid (TCA) cycle in absence of glucose. Lactate dehydrogenases (LDHA and LDHB), which we found spatially expressed in GB tissues, catalyze the interconversion of pyruvate and lactate. However, ablation of both LDH isoforms, but not only one, led to a reduction in tumor growth and an increase in mouse survival. Comparative transcriptomics and metabolomics revealed metabolic rewiring involving high oxidative phosphorylation (OXPHOS) in the LDHA/B KO group which sensitized tumors to cranial irradiation, thus improving mouse survival. When mice were treated with the antiepileptic drug stiripentol, which targets LDH activity, tumor growth decreased. Our findings unveil the complex metabolic network in which both LDHA and LDHB are integrated and show that the combined inhibition of LDHA and LDHB strongly sensitizes GB to therapy.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Lactato Desidrogenases , Animais , Camundongos , Ácido Láctico , Metabolômica , Glioblastoma/enzimologia , Glioblastoma/patologia , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/patologia
2.
Brain Tumor Pathol ; 39(3): 162-170, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35362874

RESUMO

The aim of this study was to analyze the clinical and radiological characteristics of glioblastomas (GBMs) harboring a BRAF mutation. Sequencing analysis of BRAF, IDH1/2, and TERT promoters was performed on GBM samples of patients older than 15 years. The clinical, pathological, and radiological data of patients were retrospectively reviewed. Patients were classified into three groups according to their BRAF and IDH1/2 status: BRAF group, IDH group, and BRAF/IDH-wild-type (WT) group. Among 179 GBM cases, we identified nine cases with a BRAF mutation and nine with IDH mutation. The WT group had 161 cases. Age at onset in the BRAF group was significantly lower compared to the WT group and was similar to the IDH group. In cases with negative IDH1-R132H staining and age < 55 years, 15.2% were BRAF-mutant cases. Similar to the IDH group, overall survival of the BRAF group was significantly longer compared with the WT group. Among nine cases in the BRAF group, three cases had hemorrhagic onset and prior lesions were observed in two cases. In conclusion, age < 55 years, being IDH1-R132H negative, with hemorrhagic onset or the presence of prior lesions are factors that signal recommendation of BRAF analysis for adult GBM patients.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Proteínas Proto-Oncogênicas B-raf , Adulto , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/genética , Glioblastoma/diagnóstico por imagem , Glioblastoma/enzimologia , Glioblastoma/genética , Humanos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Pessoa de Meia-Idade , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Estudos Retrospectivos
3.
Neurol India ; 70(1): 215-222, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35263886

RESUMO

Background: Liquid biopsies have emerged as convenient alternative diagnostic methods to invasive biopsies, by evaluating disease-specific biomarkers and monitoring the disease risk noninvasively. Phosphatase and tensin homolog deleted in chromosome 10 (PTEN) is a potent tumor suppressor, and its deletion/mutations are common in gliomas. Objective: Evaluate the feasibility of non-invasive detection of PTEN and its downstream genes in serum exosomes of glioma patients. Materials and methods: PTEN, Yes-associated-protein 1 (YAP1), and lysyl oxidase (LOX) transcript expression were monitored through polymerase chain reaction (PCR) in serum exosomes and their paired tumor tissues. The impact of PTEN and its axis genes expression on the overall survival (OS) was monitored. Results: Out of the 106 glioma serum samples evaluated, PTEN was retained/lost in 65.4%/34.6% of the tumor samples while it was retained/lost in 67.1%/32.9% of their paired exosomal fractions. PTEN expression in both tissue and paired exosomal fractions was observed in 48.11% of the samples. Sanger sequencing detected three mutations (Chr10: 89720791(A>G), Chr10:89720749(C>T), and Chr10:89720850(A>G). Both PTEN-responsive downstream genes (YAP1) and LOX axis were upregulated in the PTEN-deficient samples. PTEN loss was associated with poor survival in the glioma patients (hazard ratio (HR) 0.68, confidence interval (CI): 0.35-1.31, P = 0.28). The OS of the exosomal PTEN cohort coincided with the tumor-tissue PTEN devoid group (HR 1.08, CI: 0.49-2.36, P = 0.85). While, old age yielded the worst prognosis; gender, location, and grade were not prognostic of OS in the multivariate analysis. Conclusions: PTEN and its responsive genes YAP1 and LOX can be detected in serum exosomes and can serve as essential tools for the non-invasive evaluation/identification of aggressive gliomas.


Assuntos
Neoplasias Encefálicas , Glioma , PTEN Fosfo-Hidrolase , Biomarcadores Tumorais , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glioma/diagnóstico , Glioma/enzimologia , Glioma/genética , Glioma/patologia , Humanos , Mutação , PTEN Fosfo-Hidrolase/genética , Prognóstico
4.
J Biol Chem ; 298(3): 101703, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35148992

RESUMO

Ferroptosis is an iron-dependent mode of cell death caused by excessive oxidative damage to lipids. Lipid peroxidation is normally suppressed by glutathione peroxidase 4, which requires reduced glutathione. Cystine is a major resource for glutathione synthesis, especially in cancer cells. Therefore, cystine deprivation or inhibition of cystine uptake promotes ferroptosis in cancer cells. However, the roles of other molecules involved in cysteine deprivation-induced ferroptosis are unexplored. We report here that the expression of gamma-glutamyltransferase 1 (GGT1), an enzyme that cleaves extracellular glutathione, determines the sensitivity of glioblastoma cells to cystine deprivation-induced ferroptosis at high cell density (HD). In glioblastoma cells expressing GGT1, pharmacological inhibition or deletion of GGT1 suppressed the cell density-induced increase in intracellular glutathione levels and cell viability under cystine deprivation, which were restored by the addition of cysteinylglycine, the GGT product of glutathione cleavage. On the other hand, cystine deprivation induced glutathione depletion and ferroptosis in GGT1-deficient glioblastoma cells even at an HD. Exogenous expression of GGT1 in GGT1-deficient glioblastoma cells inhibited cystine deprivation-induced glutathione depletion and ferroptosis at an HD. This suggests that GGT1 plays an important role in glioblastoma cell survival under cystine-limited and HD conditions. We conclude that combining GGT inhibitors with ferroptosis inducers may provide an effective therapeutic approach for treating glioblastoma.


Assuntos
Neoplasias Encefálicas , Cistina , Ferroptose , Glioblastoma , gama-Glutamiltransferase , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Cistina/deficiência , Cistina/metabolismo , Glioblastoma/enzimologia , Glioblastoma/genética , Glioblastoma/metabolismo , Glutationa/metabolismo , Humanos , gama-Glutamiltransferase/biossíntese , gama-Glutamiltransferase/genética
5.
Sci Rep ; 12(1): 3200, 2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35217778

RESUMO

Alterations in the expression of the Duchenne muscular dystrophy (DMD) gene have been associated with the development, progression and survival outcomes of numerous cancers including tumours of the central nervous system. We undertook a detailed bioinformatic analysis of low-grade glioma (LGG) bulk RNAseq data to characterise the association between DMD expression and LGG survival outcomes. High DMD expression was significantly associated with poor survival in LGG with a difference in median overall survival between high and low DMD groups of over 7 years (P = < 0.0001). In a multivariate model, DMD expression remained significant (P = 0.02) and was an independent prognostic marker for LGG. The effect of DMD expression on overall survival was only apparent in isocitrate dehydrogenase (IDH) mutant cases where non-1p/19q co-deleted LGG patients could be further stratified into high/low DMD groups. Patients in the high DMD group had a median overall survival time almost halve that of the low DMD group. The expression of the individual DMD gene products Dp71, Dp71ab and Dp427m were also significantly associated with overall survival in LGG which have differential biological effects relevant to the pathogenesis of LGG. Differential gene expression and pathway analysis identifies dysregulated biological processes relating to ribosome biogenesis, synaptic signalling, neurodevelopment, morphogenesis and immune pathways. Genes spanning almost the entirety of chromosome 1p are upregulated in patients with high overall DMD, Dp71 and Dp427m expression which worsens survival outcomes for these patients. We confirmed dystrophin protein is variably expressed in LGG tumour tissue by immunohistochemistry and, overall, demonstrate that DMD expression has potential utility as an independent prognostic marker which can further stratify IDH mutant LGG to identify those at risk of poor survival. This knowledge may improve risk stratification and management of LGG.


Assuntos
Neoplasias Encefálicas , Glioma , Isocitrato Desidrogenase , Distrofia Muscular de Duchenne , Biomarcadores/metabolismo , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Expressão Gênica , Glioma/enzimologia , Glioma/genética , Glioma/patologia , Humanos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Distrofia Muscular de Duchenne/enzimologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Mutação , Gradação de Tumores , Prognóstico
6.
Anal Bioanal Chem ; 414(5): 1797-1807, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34984507

RESUMO

Three disposable stochastic sensors designed using nanolayer deposition of copper (Cu), graphene (GR), and copper-graphene (Cu-GR) composite on the silk textile, as substrate, were modified with chitosan (n=371-744), for biomedical analysis. Isocitrate dehydrogenase 1 (IDH1) and isocitrate dehydrogenase 2 (IDH2) served as model analytes for molecular recognition and quantification in biological samples such as whole blood and brain tumor tissue samples. The best sensitivities (3.77×107s µg mL-1 for IDH1, and 1.88×107s µg mL-1 for IDH2) and the lowest limits of quantification (10-2fg mL-1 for IDH1, and 5×10-2fg mL-1 for IDH2) for both IDH1 and IDH2 were recorded for the disposable stochastic sensors based on chitosan/graphene nanolayer. Very good correlations between the screening method based on disposable stochastic sensors and enzyme-linked immunosorbent assay (ELISA) were obtained; this was also proved by the results obtained using the paired t-test.


Assuntos
Cobre/química , Grafite/química , Isocitrato Desidrogenase/análise , Isoenzimas/análise , Seda/química , Neoplasias Encefálicas/enzimologia , Ensaio de Imunoadsorção Enzimática , Humanos , Isocitrato Desidrogenase/sangue , Limite de Detecção , Microscopia Eletrônica de Varredura , Processos Estocásticos
7.
J Pathol ; 256(3): 297-309, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34767259

RESUMO

Capicua (CIC)'s transcriptional repressor function is implicated in neurodevelopment and in oligodendroglioma (ODG) aetiology. However, CIC's role in these contexts remains obscure, primarily from our currently limited knowledge regarding its biological functions. Moreover, CIC mutations in ODG invariably co-occur with a neomorphic IDH1/2 mutation, yet the functional relationship between these two genetic events is unknown. Here, we analysed models derived from an E6/E7/hTERT-immortalized (i.e. p53- and RB-deficient) normal human astrocyte cell line. To examine the consequences of CIC loss, we compared transcriptomic and epigenomic profiles between CIC wild-type and knockout cell lines, with and without mutant IDH1 expression. Our analyses revealed dysregulation of neurodevelopmental genes in association with CIC loss. CIC ChIP-seq was also performed to expand upon the currently limited ensemble of known CIC target genes. Among the newly identified direct CIC target genes were EPHA2 and ID1, whose functions are linked to neurodevelopment and the tumourigenicity of in vivo glioma tumour models. NFIA, a known mediator of gliogenesis, was discovered to be uniquely overexpressed in CIC-knockout cells expressing mutant IDH1-R132H protein. These results identify neurodevelopment and specific genes within this context as candidate targets through which CIC alterations may contribute to the progression of IDH-mutant gliomas. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Astrócitos/enzimologia , Epigenoma , Epigenômica , Perfilação da Expressão Gênica , Isocitrato Desidrogenase/genética , Mutação , Proteínas Repressoras/genética , Transcriptoma , Astrócitos/patologia , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Transformada , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Metilação de DNA , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Isocitrato Desidrogenase/metabolismo , Fatores de Transcrição NFI/genética , Fatores de Transcrição NFI/metabolismo , Oligodendroglioma/enzimologia , Oligodendroglioma/genética , Oligodendroglioma/patologia , Receptor EphA2/genética , Receptor EphA2/metabolismo , Proteínas Repressoras/deficiência
8.
Elife ; 102021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34931988

RESUMO

Molecular imaging could have great utility for detecting, classifying, and guiding treatment of brain disorders, but existing probes offer limited capability for assessing relevant physiological parameters. Here, we describe a potent approach for noninvasive mapping of cancer-associated enzyme activity using a molecular sensor that acts on the vasculature, providing a diagnostic readout via local changes in hemodynamic image contrast. The sensor is targeted at the fibroblast activation protein (FAP), an extracellular dipeptidase and clinically relevant biomarker of brain tumor biology. Optimal FAP sensor variants were identified by screening a series of prototypes for responsiveness in a cell-based bioassay. The best variant was then applied for quantitative neuroimaging of FAP activity in rats, where it reveals nanomolar-scale FAP expression by xenografted cells. The activated probe also induces robust hemodynamic contrast in nonhuman primate brain. This work thus demonstrates a potentially translatable strategy for ultrasensitive functional imaging of molecular targets in neuromedicine.


Assuntos
Neoplasias Encefálicas/enzimologia , Endopeptidases/metabolismo , Proteínas de Membrana/metabolismo , Imagem Molecular , Animais , Feminino , Masculino , Ratos , Ratos Sprague-Dawley , Saimiri
9.
Cells ; 10(11)2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34831136

RESUMO

PFKFB3 is a bifunctional enzyme that modulates and maintains the intracellular concentrations of fructose-2,6-bisphosphate (F2,6-P2), essentially controlling the rate of glycolysis. PFKFB3 is a known activator of glycolytic rewiring in neoplastic cells, including central nervous system (CNS) neoplastic cells. The pathologic regulation of PFKFB3 is invoked via various microenvironmental stimuli and oncogenic signals. Hypoxia is a primary inducer of PFKFB3 transcription via HIF-1alpha. In addition, translational modifications of PFKFB3 are driven by various intracellular signaling pathways that allow PFKFB3 to respond to varying stimuli. PFKFB3 synthesizes F2,6P2 through the phosphorylation of F6P with a donated PO4 group from ATP and has the highest kinase activity of all PFKFB isoenzymes. The intracellular concentration of F2,6P2 in cancers is maintained primarily by PFKFB3 allowing cancer cells to evade glycolytic suppression. PFKFB3 is a primary enzyme responsible for glycolytic tumor metabolic reprogramming. PFKFB3 protein levels are significantly higher in high-grade glioma than in non-pathologic brain tissue or lower grade gliomas, but without relative upregulation of transcript levels. High PFKFB3 expression is linked to poor survival in brain tumors. Solitary or concomitant PFKFB3 inhibition has additionally shown great potential in restoring chemosensitivity and radiosensitivity in treatment-resistant brain tumors. An improved understanding of canonical and non-canonical functions of PFKFB3 could allow for the development of effective combinatorial targeted therapies for brain tumors.


Assuntos
Neoplasias Encefálicas/enzimologia , Fosfofrutoquinase-2/metabolismo , Animais , Neoplasias Encefálicas/irrigação sanguínea , Neoplasias Encefálicas/imunologia , Carcinogênese/patologia , Humanos , Imunomodulação , Neovascularização Patológica/enzimologia , Hipóxia Tumoral
11.
Anal Cell Pathol (Amst) ; 2021: 4907167, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745848

RESUMO

Enhancer of zeste homolog 2 (EZH2) is a histone-lysine N-methyltransferase that encrypts a member of the Polycomb group (PcG) family. EZH2 forms a repressive chromatin structure which eventually participates in regulating the development as well as lineage propagation of stem cells and glioma progression. Posttranslational modifications are distinct approaches for the adjusted modification of EZH2 in the development of cancer. The amino acid succession of EZH2 protein makes it appropriate for covalent modifications, like phosphorylation, acetylation, O-GlcNAcylation, methylation, ubiquitination, and sumoylation. The glioma microenvironment is a dynamic component that comprises, besides glioma cells and glioma stem cells, a complex network that comprises diverse cell types like endothelial cells, astrocytes, and microglia as well as stromal components, soluble factors, and the extracellular membrane. EZH2 is well recognized as an essential modulator of cell invasion as well as metastasis in glioma. EZH2 oversecretion was implicated in the malfunction of several fundamental signaling pathways like Wnt/ß-catenin signaling, Ras and NF-κB signaling, PI3K/AKT signaling, ß-adrenergic receptor signaling, and bone morphogenetic protein as well as NOTCH signaling pathways. EZH2 was more secreted in glioblastoma multiforme than in low-grade gliomas as well as extremely secreted in U251 and U87 human glioma cells. Thus, the blockade of EZH2 expression in glioma could be of therapeutic value for patients with glioma. The suppression of EZH2 gene secretion was capable of reversing temozolomide resistance in patients with glioma. EZH2 is a promising therapeutic as well as prognostic biomarker for the treatment of glioma.


Assuntos
Neoplasias Encefálicas/patologia , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Glioma/patologia , Microambiente Tumoral/fisiologia , Animais , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/enzimologia , Glioma/enzimologia , Humanos
12.
Life Sci Alliance ; 4(12)2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34645618

RESUMO

Better understanding of GBM signalling networks in-vivo would help develop more physiologically relevant ex vivo models to support therapeutic discovery. A "functional proteomics" screen was undertaken to measure the specific activity of a set of protein kinases in a two-step cell-free biochemical assay to define dominant kinase activities to identify potentially novel drug targets that may have been overlooked in studies interrogating GBM-derived cell lines. A dominant kinase activity derived from the tumour tissue, but not patient-derived GBM stem-like cell lines, was Bruton tyrosine kinase (BTK). We demonstrate that BTK is expressed in more than one cell type within GBM tissue; SOX2-positive cells, CD163-positive cells, CD68-positive cells, and an unidentified cell population which is SOX2-negative CD163-negative and/or CD68-negative. The data provide a strategy to better mimic GBM tissue ex vivo by reconstituting more physiologically heterogeneous cell co-culture models including BTK-positive/negative cancer and immune cells. These data also have implications for the design and/or interpretation of emerging clinical trials using BTK inhibitors because BTK expression within GBM tissue was linked to longer patient survival.


Assuntos
Tirosina Quinase da Agamaglobulinemia/metabolismo , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/mortalidade , Glioblastoma/enzimologia , Glioblastoma/mortalidade , Proteoma/metabolismo , Transdução de Sinais , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular , Técnicas de Cocultura/métodos , Glioblastoma/patologia , Humanos , Células-Tronco Neoplásicas/enzimologia , Proteômica/métodos , Fatores de Transcrição SOXB1/metabolismo , Taxa de Sobrevida
13.
Clin Cancer Res ; 27(20): 5669-5680, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34433651

RESUMO

PURPOSE: The epigenetic mechanisms involved in transcriptional regulation leading to malignant phenotype in gliomas remains poorly understood. Topoisomerase IIB (TOP2B), an enzyme that decoils and releases torsional forces in DNA, is overexpressed in a subset of gliomas. Therefore, we investigated its role in epigenetic regulation in these tumors. EXPERIMENTAL DESIGN: To investigate the role of TOP2B in epigenetic regulation in gliomas, we performed paired chromatin immunoprecipitation sequencing for TOP2B and RNA-sequencing analysis of glioma cell lines with and without TOP2B inhibition and in human glioma specimens. These experiments were complemented with assay for transposase-accessible chromatin using sequencing, gene silencing, and mouse xenograft experiments to investigate the function of TOP2B and its role in glioma phenotypes. RESULTS: We discovered that TOP2B modulates transcription of multiple oncogenes in human gliomas. TOP2B regulated transcription only at sites where it was enzymatically active, but not at all native binding sites. In particular, TOP2B activity localized in enhancers, promoters, and introns of PDGFRA and MYC, facilitating their expression. TOP2B levels and genomic localization was associated with PDGFRA and MYC expression across glioma specimens, which was not seen in nontumoral human brain tissue. In vivo, TOP2B knockdown of human glioma intracranial implants prolonged survival and downregulated PDGFRA. CONCLUSIONS: Our results indicate that TOP2B activity exerts a pleiotropic role in transcriptional regulation of oncogenes in a subset of gliomas promoting a proliferative phenotype.


Assuntos
Neoplasias Encefálicas/genética , DNA Topoisomerases Tipo II/fisiologia , Epigênese Genética/fisiologia , Glioma/genética , Íntrons/fisiologia , Oncogenes/fisiologia , Proteínas de Ligação a Poli-ADP-Ribose/fisiologia , Regiões Promotoras Genéticas/fisiologia , Animais , Neoplasias Encefálicas/enzimologia , Regulação Neoplásica da Expressão Gênica , Glioma/enzimologia , Humanos , Camundongos
14.
Eur J Cancer ; 156: 149-163, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34454317

RESUMO

BACKGROUND: Melanoma brain metastases (MBM) have a poor prognosis. Systemic treatments that have improved outcomes in advanced melanoma have been shown to have an intracranial (IC) effect. We studied the efficacy and outcomes of combined immune checkpoint inhibitor ipilimumab/nivolumab (Combi-ICI) or targeted therapy (Combi-TT) as first-line treatment in MBM. METHODS: MBM patients treated with Combi-ICI or Combi-TT within 3 months after MBM diagnosis. Endpoints were progression-free survival (PFS) and overall survival (OS). RESULTS: 53 patients received Combi-ICI, 32% had symptomatic MBM and 33.9% elevated LDH. 71.7% required local treatment. The disease control rate was 60.3%. IC response rate (RR) was 43.8% at 3-months with durable responses at 6- (46.5%) and 12-months (53.1%). Extracranial (EC) RR was 44.7% at 3-months and 50% at 12-months. Median PFS was 9.6 months (95% CI 3.6-NR) and median overall survival (mOS) 44.8 months (95% CI; 26.2-NR). 63 patients received Combi-TT, 55.6% of patients had symptomatic MBM, 57.2% of patients had elevated LDH and 68.3% of patients required local treatment. The disease control rate was 60.4%. ICRR was 50% at 3-months, but dropped at 6-months (20.9%). ECRR was 69.2% at 3-months and 17.6% at 12-months. Median PFS was 5.8 months (95% CI 4.2-7.6) and mOS 14.2 months (95% CI 8.99-26.8). In BRAFV600 patients, 26.7% of patients received Combi-ICI and 73.3% Combi-TT with OS (p = 0.0053) and mPFS (p = 0.03) in favour to Combi-ICI. CONCLUSION: Combi-ICI showed prolonged mOS with sustainable IC and EC responses. Despite the initially increased efficacy, Combi-TT responses at 12 months were low. Combi-ICI appeared superior to Combi-TT for OS and PFS in BRAFV600 patients. Other clinical factors are determinants for first-line treatment choice.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Inibidores de Checkpoint Imunológico/uso terapêutico , Melanoma/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Neoplasias Cutâneas/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/secundário , Antígeno CTLA-4/antagonistas & inibidores , Europa (Continente) , Feminino , Humanos , Inibidores de Checkpoint Imunológico/efeitos adversos , MAP Quinase Quinase Quinases/antagonistas & inibidores , Masculino , Melanoma/enzimologia , Melanoma/imunologia , Melanoma/secundário , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Intervalo Livre de Progressão , Inibidores de Proteínas Quinases/efeitos adversos , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Estudos Retrospectivos , Neoplasias Cutâneas/enzimologia , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/patologia , Fatores de Tempo , Vitória , Adulto Jovem
15.
Cells ; 10(8)2021 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-34440798

RESUMO

Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor. The enzyme indoleamine-2,3-dioxygenase (IDO), which participates in the rate-limiting step of tryptophan catabolism through the kynurenine pathway (KP), is associated with poor prognosis in patients with GBM. The metabolites produced after tryptophan oxidation have immunomodulatory properties that can support the immunosuppressor environment. In this study, mRNA expression, protein expression, and activity of the enzyme kynurenine monooxygenase (KMO) were analyzed in GBM cell lines (A172, LN-18, U87, U373) and patient-derived astrocytoma samples. KMO mRNA expression was assessed by real-time RT-qPCR, KMO protein expression was evaluated by flow cytometry and immunofluorescence, and KMO activity was determined by quantifying 3-hydroxykynurenine by HPLC. Heterogenous patterns of both KMO expression and activity were observed among the GBM cell lines, with the A172 cell line showing the highest KMO expression and activity. Higher KMO mRNA expression was observed in glioma samples than in patients diagnosed with only a neurological disease; high KMO mRNA expression was also observed when using samples from patients with GBM in the TCGA program. The KMO protein expression was localized in GFAP+ cells in tumor tissue. These results suggest that KMO is a relevant target to be explored in glioma since it might play a role in supporting tumor metabolism and immune suppression.


Assuntos
Astrocitoma/genética , Neoplasias Encefálicas/genética , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Quinurenina 3-Mono-Oxigenase/genética , Adulto , Astrocitoma/enzimologia , Neoplasias Encefálicas/enzimologia , Linhagem Celular Tumoral , Feminino , Glioma/enzimologia , Glioma/genética , Humanos , Estimativa de Kaplan-Meier , Cinurenina/análogos & derivados , Cinurenina/metabolismo , Quinurenina 3-Mono-Oxigenase/metabolismo , Masculino , Pessoa de Meia-Idade , Mutação , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Adulto Jovem
16.
Bioengineered ; 12(1): 3934-3946, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34288811

RESUMO

Glioblastoma (GBM) is a common malignant tumor of the brain. Members of the carbohydrate sulfotransferase (CHST) family are deregulated in various cancer types. However, limited data are available on the role of the members of the CHST family in the development of GBM. The present study aimed to identify the role of significant members of the CHST family in GBM and explore the effects and molecular mechanisms of these significant members on GBM cell proliferation and mobility. In the current study, we demonstrated that CHST12 is the only member of CHST family that is upregulated in GBM tissues and associated with a lower survival rate according to the data obtained from The Cancer Genome Atlas. Similarly, the expression of CHST12 increased in GBM tissues than in adjacent tissues and had an important diagnostic value in distinguishing tumor tissues from adjacent tissues. The high expression of CHST12 indicated a lower overall survival rate, was negatively associated with the Karnofsky Performance Scale score, was positively associated with the KI67 expression rate, and was an independent risk factor for GBM. Knockdown of CHST12 significantly decreased GBM cell proliferation and mobility and inhibited the Wnt/ß-catenin pathway. Restoration of ß-catenin expression in GBM cells reversed the inhibitory effects of CHST12 knockdown on GBM cell proliferation and mobility. In conclusion, the present study demonstrated that CHST12 may be a novel biomarker for GBM; it regulates GBM cell proliferation and mobility via the WNT/ß-catenin pathway.


Assuntos
Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/patologia , Movimento Celular , Técnicas de Silenciamento de Genes , Glioblastoma/enzimologia , Glioblastoma/patologia , Sulfotransferases/deficiência , Via de Sinalização Wnt , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Humanos , Masculino , Pessoa de Meia-Idade , Sulfotransferases/genética , Sulfotransferases/metabolismo , Análise de Sobrevida , Regulação para Cima/genética
18.
Biomed Pharmacother ; 140: 111766, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34082401

RESUMO

The protein L-isoaspartyl (D-aspartyl) methyltransferase (PIMT) recognizes abnormal L-isoaspartyl and D-aspartyl residues in proteins. Among examined tissues, PIMT shows the highest level in the brain. The U-87 MG cell line is a commonly used cellular model to study the most frequent brain tumor, glioblastoma. Previously, we reported that PIMT amount increased when U-87 MG cells were detached from the extracellular matrix. Recently, we also showed that PIMT possessed pro-angiogenic properties. Together, these PIMT features led us to postulate that PIMT could play a critical role in glioblastoma growth. Here, we investigate PIMT role in U-87 MG cell viability, adhesion, migration, invasion, and colony formation and in the reorganization of the actin and tubulin cytoskeleton. PIMT inhibition by siRNA significantly reduced in vitro cell migration and invasion in various assays, including wound-healing assay, Boyden chambers coated with gelatin and Matrigel invasion assay. Conversely, in stably transfected U-87 MG cells overexpressing wild-type PIMT, cell migration, invasive capacity and colony formation significantly increased. However, in stably transfected cells with the gene encoding for mutated PIMT(D83V), despite of its overexpression, migration and invasion remained similar to those observed in control cells. In all these conditions, cell viability was unaffected. Importantly, overexpressed wild-type PIMT and mutated PIMT(D83V) have opposite effects on the organization of microtubules and actin cytoskeleton and thus on morphology of U-87 cells. These data highlighted the importance of PIMT level and its catalytic activity in migration and invasion of U-87 glioma cells and its possible contribution in cancer invasion during glioma growth.


Assuntos
Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/patologia , Glioblastoma/enzimologia , Glioblastoma/patologia , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/metabolismo , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular , Sobrevivência Celular , Humanos , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/genética , RNA Interferente Pequeno/genética
19.
Int J Mol Sci ; 22(9)2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-34063168

RESUMO

Gliomas are the most common and challenging malignancies of the central nervous system (CNS), due to their infiltrative nature, tendency to recurrence, and poor response to treatments. Indeed, despite the advances in neurosurgical techniques and in radiation therapy, the modest effects of therapy are still challenging. Moreover, tumor recurrence is associated with the onset of therapy resistance; it is therefore critical to identify effective and well-tolerated pharmacological approaches capable of inducing durable responses in the appropriate patient groups. Molecular alterations of the RTK/PI3K/Akt/mTOR signaling pathway are typical hallmarks of glioma, and several clinical trials targeting one or more players of this axis have been launched, showing disappointing results so far, due to the scarce BBB permeability of certain compounds or to the occurrence of resistance/tolerance mechanisms. However, as RTK/PI3K/mTOR is one of the pivotal pathways regulating cell growth and survival in cancer biology, targeting still remains a strong rationale for developing strategies against gliomas. Future rigorous clinical studies, aimed at addressing the tumor heterogeneity, the interaction with the microenvironment, as well as diverse posology adjustments, are needed-which might unravel the therapeutic efficacy and response prediction of an RTK/PI3K/mTOR-based approach.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/enzimologia , Glioma/tratamento farmacológico , Glioma/enzimologia , Terapia de Alvo Molecular , Fosfatidilinositol 3-Quinases/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Humanos , Transdução de Sinais
20.
Biomolecules ; 11(5)2021 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-34065652

RESUMO

Isocitrate dehydrogenase (IDH1) catalyzes the reversible NADP+-dependent oxidation of isocitrate to α-ketoglutarate (αKG). IDH1 mutations, primarily R132H, drive > 80% of low-grade gliomas and secondary glioblastomas and facilitate the NADPH-dependent reduction of αKG to the oncometabolite D-2-hydroxyglutarate (D2HG). While the biochemical features of human WT and mutant IDH1 catalysis have been well-established, considerably less is known about mechanisms of regulation. Proteomics studies have identified lysine acetylation in WT IDH1, indicating post-translational regulation. Here, we generated lysine to glutamine acetylation mimic mutants in IDH1 to evaluate the effects on activity. We show that mimicking lysine acetylation decreased the catalytic efficiency of WT IDH1, with less severe catalytic consequences for R132H IDH1.


Assuntos
Neoplasias Encefálicas/enzimologia , Glioblastoma/enzimologia , Glioma/enzimologia , Isocitrato Desidrogenase/metabolismo , Mutação , Processamento de Proteína Pós-Traducional , Acetilação , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Simulação por Computador , Glioblastoma/genética , Glioblastoma/patologia , Glioma/genética , Glioma/patologia , Humanos , Mutagênese Sítio-Dirigida , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...